

HLK-LD2450

运动目标探测跟踪模组

说明书

版本: V1.01 修改日期: 2025-10-15 版权所有@深圳市海凌科电子有限公

目 录

1	产品管	荀介	3
2	产品特	寺点和优势	4
	2.1 特	持点	4
	2.2 方	5案优势	5
3	应用均	る景	5
4	硬件说	兑明	6
	4.1 夕	사形尺寸	6
	4.2 弓	脚定义	7
5	使用和	中配置	7
	5.1 典	电型应用电路	7
	5.2 豆	T视化上位机工具说明	8
6	通信物	办议	g
7	安装方	5式和探测范围	10
	7.1 🕏	₹装说明	10
8	性能和	扣电气参数	11
9	天线罩	罩设计指南	12
	9.1 天	F线罩对毫米波传感器性能的影响	12
	9.2 天	F线罩的设计原则	12
	9.3 常	∮见材料	12
1	0 修订	记录	13
1	1 技术	支持和联络方式	13
		图表索引	
	主 1	国 本 (3)	-
	-	上报数据帧格式	
		帧内数据格式	
		性能和电气参数表	
	表 5	天线罩常见材料特性	12
	图 1	上位机功能演示效果图	
	图 2	毫米波雷达方案和其他方案对比	
	图 3	**** · · · = ·	
		模块引脚定义图	
		挂壁安装示意图	
		雷达挂壁安装角度辨别	
	图 7	雷达挂壁安装时跟踪范围示意图(挂壁高度1.5米)	10

1 产品简介

运动目标跟踪是指在区域内实时跟踪运动目标所在的位置,实现对区域内运动目标测距、测角和测速。LD2450是海凌科24G毫米波雷达系列中的的运动目标跟踪传感器模组,包含极简化24 GHz 雷达传感器硬件和智能算法固件。本方案主要应用在家庭、办公和酒店等普通室内场景,实现对运动人体的定位跟踪。

传感器硬件由AloT毫米波雷达芯片、高性能一发两收微带天线和低成本MCU及外围辅助电路组成。智能算法固件采用FMCW波形和雷达芯片专有的先进信号处理技术。

支持串口输出检测数据,即插即用,可灵活应用于不同的智能场景和终端产品。

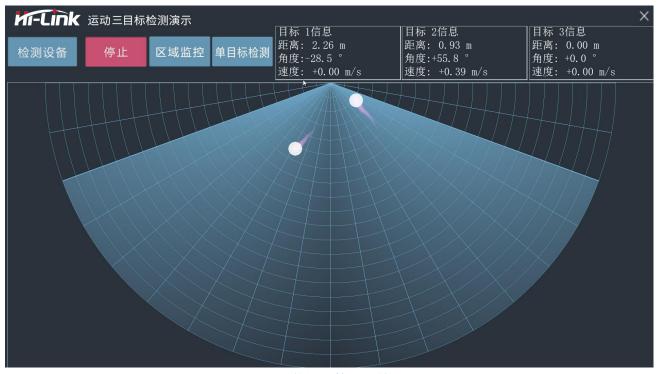


图 1 上位机功能演示效果图

2 产品特点和优势

2.1 特点

- 24 GHz ISM频段
- 整合智能毫米波雷达芯片和智能算法固件
- 精准运动目标定位和跟踪
- 最远探测距离6m
- 超小模组尺寸: 15mm x 44mm
- 挂壁安装
- 方位角±60°,俯仰角±35°
- 极致性价比之选
- 多种连接方式,带有插针和插座接口

2.2 方案优势

LD2450人体感应模组采用24GHz毫米波雷达传感器技术,和其他方案对比,在人体感应应用上有着明显的优势:

- 1.除了对运动人体感应灵敏外,对于传统方案无法识别的微动人体也都可灵敏感应到;
- 2.有良好的环境适应性, 感应效果不受温度、亮度、湿度和光线波动等周围环境影响;
- 3.有良好的外壳穿透性,可隐藏在外壳里面工作,无需在产品表面开孔,提高了产品美观度;

	红外方案	视觉方案	超声波	激光雷达	毫米波雷达
应用灵活性					
抵抗环境影响(天气光线等)					
侦测速度					
侦测准确度					•
分辨率					
方向性					
侦测距离					
穿透材料能力				•	•
尺寸				•	•
成本				•	

● 好 ● 分 ● 弱

图 2 毫米波雷达方案和其他方案对比

3 应用场景

LD2450运动目标跟踪传感器可对目标进行精准定位和跟踪,广泛应用于各种AloT场景,涵盖以下类型:

智能家居

感知人体的距离和角度,上报检测结果,以供主控模块智能控制空调、风扇等家电运行;

智能商业

位置感应,在设置的位置区间内识别人体接近或远离,及时点亮或者关闭屏幕;

卫浴

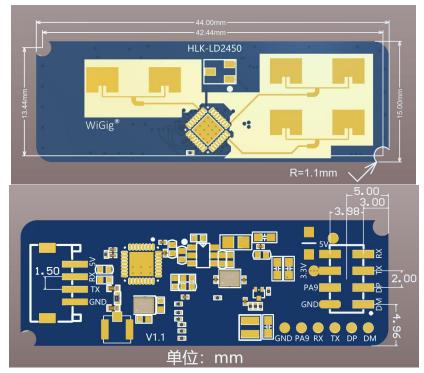
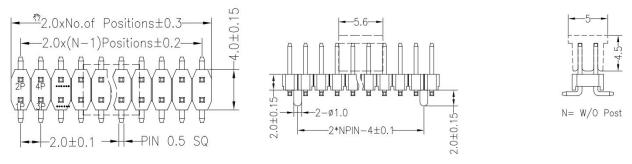
智能马桶准确控制马桶盖自动开关;

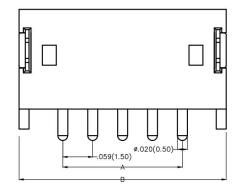
智慧照明

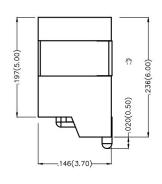
识别和感知人体,精确位置检测,可用于家庭照明设备 (感应灯、台灯等)。

4 硬件说明

4.1 外形尺寸


图 3 模块尺寸图


模块提供了插座和插针两种对外接口,两个接口都有引出串口和供电口,用户可根据需要选择使用其中任意一个来使用。

插针接口尺寸图如下:

插座接口尺寸图如下:

4.2 引脚定义

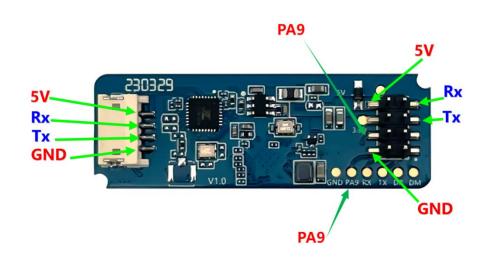


图 4 模块引脚定义图

引脚名称	功能		
5V	供电电源输入 5V		
GND 电源地			
Tx	串口Tx引脚		
Rx 串口Rx引脚			
PA9	IO口 (有人高电平,无人低电平)		

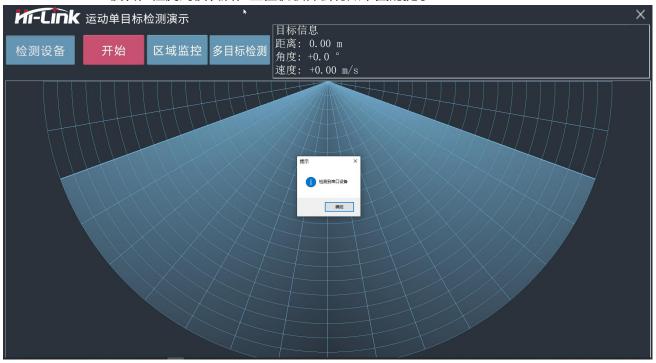
表 1 引脚定义表

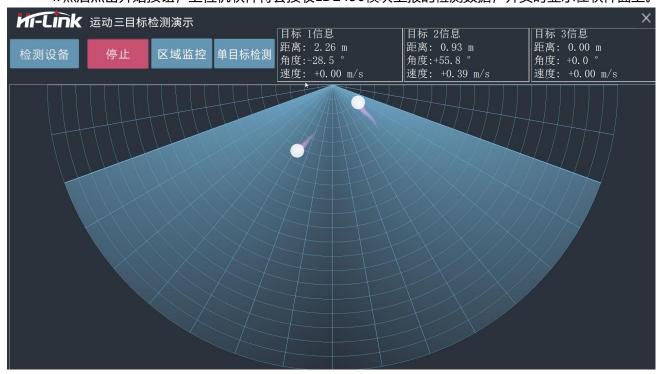
5 使用和配置

5.1 典型应用电路

LD2450模组直接通过串口按照规定的协议进行检测结果数据的输出,串口输出数据中包含有最多三个目标的位置和速度等信息,用户可根据具体应用场景灵活使用。

模块供电电压5V,输入电源的供电能力要求大于200mA。


模块IO输出电平为3.3V,输出电平引脚是PA9。 (需在雷达APP上更新V2.05版本才会有IO口输出) 串口默认波特率256000, 1停止位,无奇偶校验位。


5.2 可视化上位机工具说明

我司提供了LD2450的可视化上位机演示软件,方便用户直观体验雷达模块对目标的定位跟踪效果。 **上位机工具使用方法**:

- 1.用USB转串口工具正确连接模组串口,模块引脚说明请查看表 1 引脚定义表;
- 2.打开HLK-2450_TOOL.exe上位机工具软件,点击检测设备按钮,上位机软件自动通过串口搜索 LD2450模块;检测到模块后,上位机软件会有如下图的提示

4. 然后点击开始按钮,上位机软件将会接收LD2450模块上报的检测数据,并实时显示在软件面上。

显示内容包括:在扇形图上的最多三个目标的实时位置,每个目标的距离、角度和速度信息。

6 通信协议

本通信协议主要供需脱离上位机演示工具进行二次开发的用户使用。LD2450模组通过串口与外界通信,雷达串口默认波特率为 256000, 1停止位, 无奇偶校验位。

雷达输出检测到的目标信息,包括在区域中的x坐标, y坐标, 以及目标的速度值。雷达上报的数据格式如下表所示, 每秒上报10帧。

帧头部	帧内数据			帧尾部
AA FF 03 00	目标1信息	目标2信息	目标3信息	55 CC

表 2 上报数据帧格式

其中单个目标具体包含的信息如下表所示

目标X坐标	目标y坐标	目标速度	距离分辨率
signed int16类型,最高 位1对应正坐标,0对应 负坐标,单位mm	signed int16类型,最高 位1对应正坐标,0对应 负坐标,单位mm	signed int16类型,最高位1对 应正向速度,0对应负向速度, 另外15位对应速度,单位 cm/s	uint16 类型,单个距 离门大小,单位 mm

表 3 帧内数据格式

数据示例:

该组数据表示雷达当前跟踪到了一个目标即目标1(示例中蓝色字段),目标2和目标3(分别对应示例中的红色和黑色字段)不存在,故其相应数据段为 0x00。将目标1的数据转换为相关信息的过程展示如下:

目标1 x坐标: 0x0E + 0x03 * 256 = 782

0 - 782 = -782 mm

目标1 y坐标: 0xB1 + 0x86 * 256 = 34481

34481 - 2^15 = 1713 mm

目标1速度: 0x10 + 0x00 * 256 = 16

0 - 16 = -16 cm/s

目标1距离分辨率: 0x40 +0x01* 256 = 320 mm

7 安装方式和探测范围

LD2450典型的安装方式为挂壁安装,如图5所示,最远定位跟踪距离为6m。挂壁安装需要考虑应用场景中的遮挡以及顶部的干扰物,建议安装高度范围为1.5~2m。

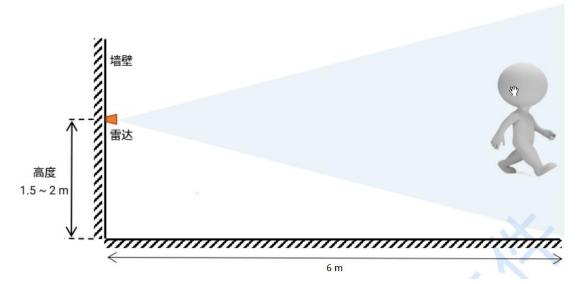


图 5 挂壁安装示意图

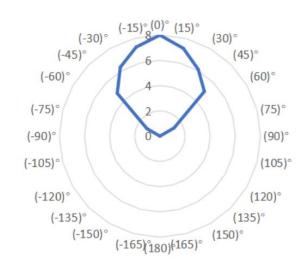


图 7 雷达挂壁安装时跟踪范围示意图(挂壁高度1.5米)。

图7展示了挂壁高度1.5m 时本模块的定位跟踪范围,测试人员身高1.75m,中等身材。探测角度范围是以雷达天线平面法向为中心的±60°。

7.1 安装说明

确认最小安装间隙

如果雷达需要安装外壳,则外壳必须在24GHz有良好的透波特性,不能含有金属材质或对电磁波有屏蔽作用的材料。

安装环境要求

本产品需要安装在合适的环境中,如在以下环境中使用,检测效果将受到影响:

- 感应区域内存在持续运动的非人物体, 如动物, 持续摆动的窗帘、正对出风口的大株绿植等
- 感应区域内存在大面积的强反射物,强反射物正对雷达天线会造成干扰
- 挂壁安装时, 需要考虑室内顶部的空调, 电风扇等外部的干扰因素

安装时注意事项

- 尽量保证雷达天线正对要检测的区域, 且天线四周开阔无遮挡
- 要保证传感器的安装位置牢固、稳定, 雷达本身的晃动将影响检测效果
- 要保证雷达的背面不会有物体运动或震动。由于雷达波具有穿透性,天线信号背瓣可能会检测到 雷达背面的运动物体。可以采用金属屏蔽罩或者金属背板,对雷达背瓣进行屏蔽,减弱雷达背面 物体造成的影响
- 存在多个 24 GHz 频段雷达时,请不要安装在波束正对方向,安装位置尽量远离,以避免可能的相互干扰。

8 性能和电气参数

/	24GHz~ 24.25GHz		
工作频段	符合 FCC、 CE、无委会认证标准		
供电要求	DC 5V,供电能力>200mA		
平均工作电流	电流 120 mA		
调制方式	FMCW		
接口	一个UART		
目标应用	最多三个目标的探测跟踪		
探测距离	6m		
探测角度	±60 °		
数据刷新率	10Hz		
扫频带宽	250MHz		
口妙市见	符合 FCC、 CE、无委会认证标准		
环境温度	-40 ~ 85°C		
外形尺寸	15mm x 44 mm		

表 4 性能和电气参数表

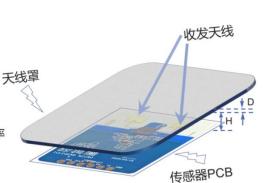
介质

9 天线罩设计指南

9.1 天线罩对毫米波传感器性能的影响

- 雷达波在天线罩边界上发生反射
 - 使得雷达辐射或接收的总功率有所损耗
 - 反射波进入接收通道,影响发射、接收通道之间的隔离度
 - 反射可能使天线的驻波变差, 进一步影响天线增益
- 雷达波在介质中传播会发生损耗, 理论上来说频率越高损耗会越大
- 电磁波在穿过介质时会产生一定程度的折射
 - 影响天线的辐射方向图, 进而影响传感器的覆盖范围

9.2 天线罩的设计原则


- 天线罩的结构形状
 - 表面光滑平整,厚度均匀一致。如平面或者球面,不能凹凸不平
 - 若有表面涂层,不能含有金属或导电的材料
 - 在天线正上方,天线罩面与天线平面保持平行
- 天线到天线罩内表面的的高度H
 - 理想的高度是空气中电磁波半波长的整数倍
 - $H = \frac{m}{2} * \frac{c_0}{f}$, 其中m为正整数, c_0 为真空光速, f为工作中心频率
 - 比如, 24.125GHz中心频率, 其在空气中的半波长约6.2mm

- 理想的厚度是介质中电磁波半波长的整数倍
- $D=rac{m}{2}*rac{c_0}{f\sqrt{\epsilon_r}}$, 其中m为正整数, ϵ_r 为天线罩材质的相对介电常数
- 比如某ABS材料 $\epsilon_r=2.5$,其半波长约3.92mm

9.3 常见材料

- 设计之前,先了解天线罩的材质和电气特性
 - 右表仅供参考, 实际值请与供应商确认
- 天线到天线罩内表面的的高度H
 - 在空间允许时,优先推荐1倍或1.5倍波长
 - 比如,对应24.125GHz推荐12.4或18.6mm
 - 误差控制: ±1.2mm
- 天线罩的厚度D
 - 推荐半波长,误差控制±20%
 - 如不能满足半波长的厚度要求
 - 推荐使用低 ϵr 的材料
 - 厚度推荐1/8波长或更薄

常见材料特性 (基于24.125GHz)

介质	ϵ_r 典型值	半波长 (mm)	1/8波长 (mm)	1/10波长 (mm)
空气	1.00	6.20	1.55	1.24
ABS1	1.50	5.06	1.27	1.01
ABS2	2.50	3.92	0.98	0.78
PC材料	3.00	3.58	0.89	0.72
PMMA亚克力1	2.00	4.38	1.10	0.88
PMMA亚克力2	5.00	2.77	0.69	0.55
PVC硬	4.00	3.10	0.78	0.62
PVC软	8.00	2.19	0.55	0.44
高密度PE	2.40	4.00	1.00	0.80
低密度PE	2.30	4.09	1.02	0.82
石英玻璃	5	2.77	0.69	0.55

表 5 天线罩常见材料特性

• 不均匀材料或多层组合材料对雷达性能的影响, 建议在设计时进行实验调整

10修订记录

日期	版本	修改内容
2023-5-10	1.00	初始版本
2023-9-25	1.01	修正型号名称和尺寸图
2025-10-15	1.02	增加IO口输出引脚描述

11 技术支持和联络方式

深圳市海凌科电子有限公司

地址:深圳市龙华区民治街道民乐社区星河WORLD E栋大厦17层1705

电话: 0755-23152658/83575155

网址: www.hlktech.com

